Регистрация / Вход
мобильная версия
ВОЙНА и МИР

 Сюжет дня

МЧС Казахстана сообщило о 25 выживших после крушения самолета в Актау
Генерала Кириллова посмертно наградили "Золотой Звездой" Героя России
Ответил не так, как все ожидали. Путин подвел итоги года
О чем Путин договорился с Лукашенко в Минске
Главная страница » Список тем -> Просмотр темы "Горизонты атома"
 Страница 4 из 9   « Первая страница< 1  2  3 4 5  6  7  8  9 >Последняя страница » 
Список тем   Предыдущая тема   Следующая тема
 Горизонты атома
Размещение комментариев доступно только зарегистрированным пользователям
Клаузевиц, RU   17.11.16 23:15            
Американские учёные создали компактный ядерный реактор для базы на Марсе - Ссылка

Американские инженеры рассказали о создании ядерного реактора мощностью в 333 киловатт размером с пианино, приспособленного для работы в условиях Марса и способного обеспечивать базу средних размеров энергией и теплом на протяжении 15 лет, говорится в статье, опубликованной в журнале Annals of Nuclear Energy.

В своей новой работе Кумар и его коллеги повысили мощность своего реактора на порядок, заметно поменяв его конструкцию и приспособив его для работы на поверхности Марса. В качестве ядерного топлива в этом реакторе служит специальный сплав низкообогащенного урана и керамики, содержащий в себе 15% урана-235, упакованный особым образом в специальную оболочку из карбида циркония и вольфрама.
В качестве охлаждающей жидкости используется необычный для Земли материал — сверхохлажденный углекислый газ, который можно напрямую добывать из атмосферы Марса, состоящей на 99% из этого вещества. Так как температуры воздуха на Марсе очень низки по сравнению с Землей, подобная процедура не потребует много энергии.
Данный реактор, по словам ученых, будет вырабатывать примерно 1,6 мегаватт тепловой энергии, около 20% которой будет конвертироваться в электричество, а остальная энергия — выделяться в окружающее пространство.
Для того, чтобы он беспрерывно работал на протяжении 15 лет, инженеры INL вставили между слоями ядерного топлива специальные "матрасы" из диоксида урана-238. Он облучается нейтронами, возникающими в ходе распада урана-235, и превращается в плутоний-239. Этот плутоний взаимодействует с нейтронами и постепенно распадается, поддерживая мощность реактора на номинальном уровне по мере выгорания урана-235.
Как и предыдущий "ядерный чемодан" INL, данный реактор будет обладать весьма скромными габаритами — размеры его активной зоны составляют всего 80 на 134 сантиметра, что позволит уместить все устройство в корпус размером с пианино или даже в меньшие габариты.
Безопасность работы этого "ядерного пианино" обеспечивается тем, что его ключевая часть — гидрид циркония, замедлитель нейтронов, позволяющий атомам урана-235 взаимодействовать с ним — не выдерживает нагрева до высоких температур. Соответственно, если реактор выйдет из строя, гидрид циркония раскалится до критической отметки, распадется на цирконий и водород, после чего распады урана естественным образом прекратятся.
Авторы статьи полагают, что их ядерный реактор может стать одним из самых дешевых и универсальных источников питания, способных обеспечить энергией марсианские базы и космические корабли на протяжении десятилетий без замены топлива, и на протяжении еще большего времени — при его обновлении.

Изменен: 17.11.16 23:15 / Клаузевиц

Клаузевиц, RU   02.11.16 13:20            
По данным газеты "Взгляд" Украина и Вестингаузу должна за топливо - Ссылка

""Смотрим атомную энергетику: год с заблокированными счетами, невыплаченными долгами по топливу, в том числе Westinghouse, и так далее и тому подобное", – продолжает он"
Клаузевиц, RU   27.10.16 20:31            
Российские космонавты испытают элементы нового ядерного двигателя на МКС - https://ria.ru/space/20161027/1480108165.html

Роскосмос планирует испытать элементы перспективной ядерной энергодвигательной установки (ЯЭДУ) мегаваттного класса на российском сегменте международной космической станции (РС МКС), заявка на соответствующую научно-исследовательскую работу (НИР) размещена на сайте госзакупок.

Одной из основных целей НИР является "разработка проектов программ летных испытаний ключевых элементов и систем перспективных ЯЭДУ мегаваттного класса в космическом пространстве, в том числе с использованием PC МКС", следует из технического задания на работу.
Всего на технические изыскания планируется потратить 264 миллиона рублей.
В документе отмечается, что использование ядерных установок нового класса позволит создавать космические аппараты, не зависимые от солнечного освещения, а также решать задачи, требующие высокого уровня электрической мощности.
Создать космический транспортно-энергетический модуль на основе ядерной энергетической установки мегаваттного класса было решено в 2010 году. Технические решения, заложенные в концепцию модуля, позволят решать широкий спектр космических задач, включая программы исследования Луны и исследовательские миссии к дальним планетам, создание на них автоматических баз. Всего на сознание транспортного ядерного-энергетического модуля для космических аппаратов Роскосмос планирует потратить в 2016-2018 годах 3,8 миллиарда рублей.

Клаузевиц, RU   20.10.16 18:53            
Учёным удалось рекордно повысить давление плазмы в ядерном реакторе - Ссылка

Команде исследователей MIT (Массачусетский технологический институт) с помощью установки Alcator-C Mod Tokamak удалось достичь температуры 35 млн. °С, что позволяет генерировать триллионы термоядерных реакций в объеме 1 куб. метр, происходящих каждую секунду. Это более чем вдвое превышает температуру внутри солнечного ядра. В камере было создано давление плазмы 2,05 атмосфер, что выше предыдущего "рекорда" на 15 %.

Плазма в Токамак
Кольцо плазмы в реакторе типа "Токамак"
Главной проблемой физиков-ядерщиков по-прежнему остается удержание раскаленной до миллионов градусов плазмы внутри реактора на достаточно длительное время с помощью магнитного поля.
Аналогичные исследования ведутся и в других странах, включая Россию. В настоящее время во Франции строится установка, которая будет в 800 раз мощнее, чем в исследовательском центре MIT, способная выдать плазму температурой 150 млн. °С.

Клаузевиц, RU   09.10.16 19:24            
Российские ученые предложили перерабатывать отработавшее ядерное топливо с помощью солевых расплавов - Ссылка
Энергоблок БН-800 на учениях подтвердил уникальные свойства своей защиты - Ссылка
ТВЭЛ готов предложить Китаю топливо нового поколения для Тяньваньской АЭС - Ссылка
МАГАТЭ прогнозирует рост ядерной энергетики на 56% - Ссылка

Клаузевиц, RU   04.10.16 18:50            
Последние новости об термоядерном реакторе ИТЭР. Довольно интересно - https://www.youtube.com/watch?v=1lqhKJygt4k
Клаузевиц, RU   28.09.16 15:32            
Современный российский ядерный реактор МБИР заинтересовал мир - Ссылка

Интерес иностранных специалистов к проекту самого мощного в мире многоцелевого исследовательского ядерного реактора на быстрых нейронах МБИР, который строится в России, превысил ожидания. Об этом сообщил директор блока по инновациям госкорпорации "Росатом" Вячеслав Першуков.
По его словам, до конца года несколько стран смогут стать участниками международного центра исследований, который будет создан на базе нового ректора.

Реактор МБИР строится на площадке предприятия Росатома "Научно-исследовательский институт атомных реакторов" в Ульяновской области. Благодаря уникальным техническим характеристикам МБИР позволяет решать широкий спектр исследовательских задач в обоснование создания новых безопасных ядерных энергетических установок, включая ректоры на быстрых нейтронах для замыкания ядерного топливного цикла.

"На базе МБИР мы создаем самую современную исследовательскую площадку не только для себя, но фактически для всего мира", – прокомментировал Першуков.

Он отметил, что на сегодняшний день было подписано два меморандума о сотрудничестве. Документы были подписаны совместно в ЮАР и Южной Кореей.

Ульяна Леденева
argus98, RU   20.09.16 20:33            
> Клаузевиц - по моему мнению, любые обсуждения об энергетике необходимо разделять на три основные составляющие:
1. Генерация энергии
2. Транспортировка энергии
3. Аккумуляция энергии
и обсуждать их раздельно.
Так вот - по п.п.1,2 у человечества проблем практически нет. И в ближайшем будушем не предвидится.
Главная проблема - пункт 3. Человечество не умеет эффективно хранить генерируюмую энергию. Недорого и в удобном для последующего использования виде. А ведь природа давны-давно это сумела создать такой аккумулятор - жидкие углеводороды, которым мы (человеки) пользуемся по полной программе. Проблема человечества - мы не умеет сделать то, что сделала природа. А надо.
Человечеству нужна реакция искуственного фотосинтеза - вода + углекислый газ + энергия = кисород + что-то жидкое углеводородное (в просторечии бензин/керосин/спирт/итп)

ps К термояду отношусь достаточно скептически. В плане механизма удержания плазмы. В звёздах всё проще - там удержание делает гравитация. Но до звёздных масштабов человечеству более, чем далеко. И опять же вопрос - куда девать (хранить) эту сумасшедшую энергию
Изменен: 20.09.16 20:35 / argus98

Клаузевиц, RU   20.09.16 15:10            
Я думаю будущее всё-таки за ядерной и термоядерной энергетикой. Можно конечно упороться и построить энергию на возобновляемых источниках, но рано или поздно прогресс потребует освоения энергий, которые силой ветра и солнечными батареями никогда не добыть. Так что на мой взгляд Евросоюз идёт по неправильному пути, а Россия - по правильному. Замыкание ядерного топливного цикла сулит очень большие перспективы, а освоение термоядерной энергетики - это вообще прорывом будет (хотя это пока экспериментальная наука).
Аяврик, RU   20.09.16 13:50            
В понедельник 19 сентября генеральный директор Международного агентства по атомной энергетике (МАГАТЭ) Юкио Амано, выступая с докладом на совете директоров агентства в Вене, заявил, что при положительном сценарии развития мировой экономики объемы использования атомной энергетики могут вырасти на 56% к 2030 году.
При негативном сценарии глава МАГАТЭ ожидает сохранения существующего объема использования атомной энергии.
На данный момент в мире насчитываетеся около 450 действующих ядерных реакторов в 30 странах мира. Еще около 60 реакторов находятся в стадии строительства. Девять из них будут введены в эксплуатацию до конца текущего года.
http://expert.ru/2016/09/19/magate-prognoziruet-rost-yadernoj-energetiki-na-56/




Клаузевиц, RU   19.09.16 17:24            
Горизонты атома от 30 июля 2016 года - Ссылка

Как сократить объемы радиоактивных отходов и использовать уже отработавшее ядерное топливо? Ответ на эти вопросы первыми в мире нашли российские ученые.
Клаузевиц, RU   21.08.16 20:27            
Статья про внедрение уран-эрбиевого топлива - Ссылка

В 1999 году ОАО "ТВЭЛ" начало массовое внедрение на реакторах РБМК-1000 уран-эрбиевого топлива первого поколения, а спустя несколько лет – второго. Его разработка стала одним из крупнейших достижений в истории топливного цикла реакторов РБМК, которые в России наряду с реакторами ВВЭР, относятся к наиболее распространенным типам ядерных энергоустановок – на них вырабатывается почти половина атомной электроэнергии. Запустить новое топливо в производство удалось благодаря уникальной кооперации ученых и производственников: специалистов РНЦ "Курчатовский институт", НИКИЭТ им. Доллежаля, ВНИИНМ им. Бочвара и ОАО "Машиностроительный завод". О том, как складывалось это сотрудничество, какие проблемы приходилось решать и что из этого получилось, рассказывают непосредственные участники проекта: ведущий научный сотрудник РНЦ "Курчатовский институт" Александр Федосов, начальник группы/лаборатории НИКИЭТ Анатолий Купалов-Ярополк, конструктор-технолог, научный руководитель проекта от ВНИИНМ Владимир Ямников, директор по производству ОАО "Машиностроительный завод" Геннадий Потоскаев и заместитель начальника ЦНИЛ ОАО "Машиностроительный завод" Николай Балагуров.
- Когда появилась идея создания уран эрбиевого топлива?
АФ: Сама идея использования выгорающего поглотителя в ядерном топливе является совершенно очевидной. В США стали использовать гадолиний в качестве выгорающего поглотителя для реакторов PWR еще в 70-х годах, в СССР использование гадолиния началось в 80-х годах в топливе для реакторов ВВЭР. Задача выгорающего поглотителя - снижение избыточной реактивности ядерной энергоустановки в самом начале кампании, что повышает и её безопасность, и экономичность.
Широкие исследования по использованию выгорающих поглотителей в реакторах РБМК начались после аварии на Чернобыльской АЭС, так как для канальных реакторов остро встал вопрос снижения парового коэффициента реактивности. С целью повышения безопасности реакторов РБМК часть ТВС была убрана из активной зоны, а вместо них поставлены дополнительные поглотители. Это привело к тому, что расход топлива в работающем реакторе увеличился примерно на 30 %, что в свою очередь привело к проблемам с хранением отработавшего топлива (ОЯТ) в приреакторных бассейнах и в хранилищах ОЯТ, скорость заполнения которых существенно возросла. В результате экономика канальных энергоблоков ухудшилась.
Попытки увеличения глубины выгорания топлива путем повышения начального обогащения не решили проблему, так как росла неравномерность энерговыделения. В результате на Игналинской АЭС с реакторами РБМК-1500 температура графита стала бы приближаться к предельно допустимой, и именно специалисты Игналинской АЭС стали инициаторами поиска путей выхода из кризиса.
Начиная с 1987 года в отделении канальных реакторов РНЦ "Курчатовский институт" велись соответствующие поисковые исследования. Нами было проанализировано множество вариантов, несколько десятков разных предложений, включая такие "экзотические", как ториевое и плутониевое топливо. Вариант с эрбием в качестве выгорающего поглотителя в топливе оказался самым оптимальным.

- Как сложилась кооперация по этому проекту?
АФ: У нас были очень хорошие контакты с сотрудниками НИКИЭТ - главного конструктора реактора, в частности с лабораторией Валерия Николаева, которая занималась разработкой топлива. И вариант с эрбием им весьма понравился. Затем к проекту подключился и Институт неорганических материалов им. Бочвара.
Таким образом, НИКИЭТ осуществлял общее руководство проекта и вел исследования эксплуатационных характеристик опытных образцов. Курчатовский институт взял на себя расчетное обоснование. ВНИИНМ приступил к разработке технологии размешивания эрбия, так как проблема равномерного распределения окиси эрбия в диоксиде урана была весьма непростой.
ВЯ: Когда стало очевидно, что введение дополнительных поглотителей в активную зону реакторов типа РБМК ухудшает экономику реактора и оптимальным является использование в качестве поглотителя эрбия, нашему институту было поручено решить вопрос, как его применить. В течение года мною совместно со специалистами ВНИИНМ была подготовлена техническая справка, в которой анализировалось состояние дел по использованию эрбия в атомной энергетике у нас и за рубежом и предлагались все возможные конструкторские и технологические варианты использования эрбия. В ней была обоснована возможность введения оксидов эрбия непосредственно в топливо и высказывалось предложение для изготовления топливных таблеток использовать смешение оксидов эрбия с диоксидом урана с последующим спеканием.
После этого начался поиск непосредственных исполнителей проекта. В работе совещания по этому вопросу, проходившему во ВНИИНМ, приняли участие представители НИКИЭТ, Курчатовского института и предприятий-производителей топлива для АЭС: Машиностроительного завода (г. Электросталь) и Ульбинского металлургического завода (г. Усть-Каменогорск, Казахстан). Машиностроительному заводу понадобился почти месяц на принятие решения о включении в работу по эрбию, но после этого электростальцы стали одними из самых активных его участников.
Хочу заметить, что "топливники" ВНИИНМ сыграли большую роль в становлении технологии уран-эрбиевого топлива, особенно начальник Топливной лаборатории Олег Милованов.

- Как шло финансирование работ?
АК: Первый договор по эрбиевому проекту был заключен между Игналинской АЭС и НИКИЭТом, который как Главный конструктор реакторной установки взял на себя все организационные мероприятия, заключение договоров, проведение необходимых испытаний... Так появилась финансовая опора проекта. На Игналинской АЭС основным двигателем проекта выступал зам. главного инженера по науке Борис Воронцов, которого поддержал директор АЭС Виктор Шевалдин. Если бы не было этой поддержки, то, конечно, реализация проекта значительно отодвинулась бы. Конечно, это был не единственный источник, еще небольшие средства, которых хватило на первый год, выделило Управление по проектированию и испытанию ядерных реакторов и специальных установок Минатома (бывший 16 Главк Минсредмаша), затем подключилась Ленинградская АЭС…
Нужно отдать должное также и руководству Машиностроительного завода, который не только активно участвовал в отработке технологии изготовления топлива, но и взял на себя финансирование некоторых видов работ, в частности испытаний, связанных с определением теплопроводности и газовыделения из таблеток. Затем в финансирование проекта включились "ТВЭЛ" и "Росэнергоатом".
Тут важно вспомнить, что середина 90-х годов – это время неплатежей и бартера. В стране была огромная инфляция, поэтому все организации, выступавшие в роли Заказчика, затягивали оплату выполненных этапов работ, что естественно, не способствовало их ускорению.
Бывало, например, так, что Машиностроительный завод оплачивал исследования свойств нового топлива по цепочке взаимозачетов: МСЗ-НИКИЭТ-СФ НИЭКИЭТ-Белоярская АЭС-МСЗ.

- С какими проблемами вы столкнулись в ходе реализации этого проекта?
АК: Для загрузки первой опытной партии ТВС необходимы были обоснования, которые разрабатывал НИКИЭТ. Это серьезные документы, на основании которых литовский и российский Атомнадзоры давали разрешение на проведение испытаний. Определенная часть обоснований безопасности испытаний отводилась под результаты испытаний опытных партий уран-эрбиевых таблеток, которые проводились во ВНИИНМ и свердловском филиале НИКИЭТ – Институте реакторного материаловедения (ИРМ). Последний, в частности, исследовал их свойства по теплопроводности и газовыделению.
Получение реальных экспериментальных данных по новому топливу, определение его физико-химических, механических и радиационных свойств и были основной проблемой в продвижении проекта. Если с гадолинием как выгорающим поглотителем уже был определенный опыт работы, то с эрбием никто не работал, и не было данных, как он себя поведет в топливе.
В 1993 году мы смогли приобрести в Киргизии 10 кг сверхчистого оксида эрбия, которые сразу пошли в дело (потом, кстати, было доказано, что такая степень чистоты не обязательна). ВНИИНМ изготовил опытную партию таблеток, начались физические эксперименты в Курчатовском институте, ИРМе. Так, теплопроводность уран-эрбиевого топлива в области низких температур оказалась примерно на 10 % меньше, чем у обычных таблеток, а газовыделение - ниже. За два года исследований и испытаний было получено достаточно данных, чтобы доказать контролирующим органам безопасность нового топлива.
Специалистами НИКИЭТ был выполнен значительный объём расчетов по обоснованию характеристик реактора с уран-эрбиевым топливом в условиях нормальной эксплуатацией и проектных аварий. Эти работы, несмотря на значительную трудоёмкость, одновременно выполнялись в лаборатории А. Краюшкина с использованием других расчётных программ. Это позволило снизить риск получения ошибочных результатов.
АФ: Главная трудность заключалась в том, что расчетные предположения нуждались в экспериментальном подтверждении на действующем реакторе. И то, что Игналинская АЭС согласилась провести у себя экспериментальную загрузку, было довольно смелым решением, но тем самым проблема благополучно разрешилась.
Отмечу, что до постановки в реактор эксперименты с эрбием проводились на критическом стенде РБМК в Курчатовском институте. Но это были отдельные стерженьки, наполненные окисью эрбия, кроме того, температура стенда комнатная. Все это сильно отличается от условий реактора. Тем не менее, эксперименты позволили отработать методику расчетов.
Другая трудность возникла в связи с реализуемой в то время на реакторах РБМК программой внедрения новых стержней регулирования. В наших прогнозных расчетах мы стремились к тому, чтобы выгрузить из активной зоны все дополнительные поглотители, полностью заменив их на эрбий в топливе. А новые стержни регулирования отличались тем, что каждая их очередная модификация приводила к уменьшению общего количества воды в активной зоне, вследствие чего увеличивался паровой коэффициент реактивности реактора. То есть мы паровой коэффициент пытались снизить за счет перехода на эрбиевое топливо, а в то же время за счет внедрения очередных новых стержней он повышался. Причина была в отсутствии согласованности различных программ по повышению безопасности канальных реакторов. Тем не менее, расчеты показали, что без перехода на уран-эрбиевое топливо, замена стержней регулирования потребовала бы существенной догрузки поглотителей и привела бы к увеличению расхода топлива. Поэтому эрбий частично взял на себя функцию компенсации побочных эффектов от внедрения новых стержней, и сгладил остроту проблемы.
Для реактора РБМК эрбий оказался просто уникальным элементом, который позволил одновременно решить задачи понижения парового коэффициента и выравнивания энерговыделения в активной зоне.
НБ: Для Машиностроительного завода главная проблема заключалась в обеспечении требуемой специалистами ВНИИНМ гомогенности выгорающего поглотителя-эрбия в объеме таблетки. Если при работе с гадолинием, концентрация которого в топливе составляла несколько процентов, особых проблем не наблюдалось, то для эрбия с его содержанием в 0,41 % это составляло определенную технологическую проблему. Традиционно такие композиции делают через лигатуру, то есть на первом этапе готовят смесь, в которой доля нужного компонента составляет 20-30 %. Такие порошки легко перемешиваются. Но мы отказались от этой технологии и пошли по пути использования для перемешивания вихревого смесителя, чтобы осуществить процесс смешивания диоксида урана и оксида эрбия в один проход.
Вихревые смесители достаточно широко используются в различных технологических процессах и представляют собой цилиндр со сферическим дном и вращающимся ротором с полусферическим перемешивателем. Отработка режимов перемешивания шла несколько месяцев, но в итоге за один заход в смесителе были получены требуемые результаты.
Чтобы не допустить пересечения технологических потоков изготовления топлива с чистым ураном и уран-эрбием, было принято решение разместить участок аналитического контроля уран-эрбиевых таблеток в отдельном корпусе. Кстати, большую роль в разработке новой технологии сыграл Аникий Назарович Субботин, который очень много сделал для того, чтобы разработать статистически достоверную методику оценки малых проб на содержание компонентов. Он работал сверхурочно, в выходные и в итоге добился хороших результатов.

- Как началось внедрение нового топлива?
АФ:
К 1995 году была отработана технология и на МСЗ изготовлена первая партия 150 штук эрбиевых ТВС (ЭТВС) с обогащением 2,4 % и содержанием эрбия 0,41 %. Их начали загружать в энергоблок № 2 Игналинской АЭС.
На это ушло полгода, и результаты эксплуатации очень хорошо совпали с расчетами. Было решено продолжать внедрение нового топлива, увеличивая размер партии. Поэтому следующая загрузка топлива на первый энергоблок Игналинской АЭС составляла уже 500 ЭТВС.
Положительный опыт эксплуатации уран-эрбиевого топлива подвигнул эксплуатационников к использованию его и в реакторе РБМК-1000, для которого с целью увеличения глубины выгорания было разработано новое топливо обогащением 2,6 % вместо ранее применяемого 2,4 % без эрбия. В 1996 году опытная партия в 200 ЭТВС поступила для загрузки в энергоблок № 2 Ленинградской АЭС, который традиционно выступал головным при испытаниях. После подтверждения требуемого эффекта партия расширилась до 700 ТВС; началась загрузка энергоблока № 1, позже подключились 3-й и 4-й энергоблоки Ленинградской АЭС. Здесь хотелось бы отметить большой вклад заместителя главного инженера ЛАЭС по науке Олега Черникова во внедрение уран-эрбиевого топлива на реакторах РБМК-1000.
ГП: - Мне лично пришлось заниматься внедрением уран-эрбиевого топлива. Чтобы провести его промышленное испытание, надо было убедить руководство и специалистов Игналинской АЭС в преимуществе экспериментальной разработки. Генеральный директор ОАО "МСЗ" Валерий Межуев, будучи полностью уверенным в потребительских свойствах новой продукции завода, сделал Игналинской АЭС нестандартное предложение: если применение нового топлива не даст требуемого эффекта и потребуется его досрочная замена, то завод гарантировал поставку за свой счет необходимого количества свежего топлива старого типа.
Руководство Игналинской АЭС, оценив все возможные риски введения нового топлива в технологический цикл, пошло на этот шаг.
Топливо прекрасно показало себя в эксплуатации: в активной зоне реактора выровнялись поля энерговыделения и увеличилось выгорание урана. То есть, нужный эффект был достигнут, но новое топливо стоило дороже прежнего примерно на 20 %. Тогда, для продвижения уран-эрбиевого топлива, руководство ОАО "МСЗ" предложило атомным станциям ступенчатое, в течение 5 лет, повышение цены на ЭТВС. Такая ценовая политика завода по внедрению новой разработки принесла свои плоды – сейчас все реакторы типа РБМК закупают только уран-эрбиевое топливо.

- А непосредственно на станции контроль работы нового топлива велся?
АК: Первая сборка во второй энергоблок Игналинской АЭС была загружена при личном участии специалистов НИКИЭТ, Курчатовского института. Это было 26 июня 1995 года. Вообще процесс загрузки ТВС в каждом случае велся в соответствии с программой реакторных испытаний. Программа реакторных испытаний разрабатывалась совместно НИКИЭТом, Курчатовским институтом и эксплуатирующей организацией. Она предусматривала, например, проведение измерений при загрузке первых ТВС, затем через каждые 50 ТВС измерялся паровой коэффициент реактивности реактора. Результаты измерений и характеристики активной зоны передавались в НИКИЭТ и Курчатовский институт, специалисты которых просчитывали, анализировали и давали добро на продолжение загрузки. То есть это был строго контролируемый процесс и со стороны НИКИЭТа, и со стороны Курчатовского института. Работы много было сделано.
- Можно посчитать выигрыш от перехода на уран-эрбиевое топливо?
АФ: Результатом внедрения уран-эрбиевого топлива для реакторов типа РБМК стало снижение расхода топлива примерно на 30 % и как следствие - замедление темпов заполнения бассейнов выдержки и хранилища отработавшего топлива. Последующее увеличение обогащения дало снижение расхода топлива еще примерно на 10-15 %.
Рассчитать экономический эффект от внедрения нового топлива для атомных электростанций в сопоставимых ценах довольно сложно, но ориентировочные оценки показывают, что для всех АЭС общий экономический эффект составляет порядка 1 млрд долларов без учета экономии на хранении отработавшего топлива. На Игналинской АЭС, например, топливная составляющая себестоимости "атомной" электроэнергии уменьшилась с 2,29 до 1,24 цент/кВтч.
В 1999 году началось массовое внедрение на РБМК-1000 уран-эрбиевого топлива первого поколения с обогащением 2,6 %. А в 2005 году начался переход на топливо второго поколения с обогащением 2,8 %. И сейчас можно сказать, что практически на всех блоках завершен переход на уран-эрбиевое топливо второго поколения. Выпуск обычного топлива без использования эрбия как выгорающего поглотителя прекращен.

- Что еще, помимо повышения безопасности реактора и улучшения его эксплуатационных характеристик, дало внедрение уран-эрбиевого топлива?
АК: Я связываю с внедрением нового топлива существенное улучшение качества ТВС по такому показателю, как негерметичность твэлов. Программой испытаний первых опытных партий предписывалась приостановка загрузки этой партии в случае выхода ЭТВС из строя. Этого не случилось, первая сборка вышла из строя только через два или три года. А несколько лет эксплуатации показали, что число негерметичных твэлов из ЭТВС уменьшилось в десять раз.
И если негерметичность обычных ТВС на реакторах типа РБМК в то время составляла 0,4 %, то для уран-эрбиевых ТВС этот показатель составил 0,04 %. Это связано как с существенным ростом культуры производства и эксплуатации ЭТВС на Машиностроительном заводе и АЭС, а также со снижением эксплуатационных нагрузок вследствие выравнивания энерговыделения в активной зоне. Причем процесс снижения количества негерметичных ЭТВС наблюдался поочередно на всех блоках, где шло внедрение уран-эрбиевого топлива.
- Есть ли у российских производителей некое ноу-хау, которое можно предложить зарубежным потребителям ядерного топлива?
АФ: В свое время американские фирмы начали рассматривать варианты использования уран-эрбиевого топлива для реакторов PWR с целью продления топливной компании до 24 месяцев. В этом случае эрбий имеет некоторые преимущества, потому что он не так быстро выгорает, как гадолиний, и улучшает характеристики безопасности в начальный момент кампании. В США в 90-х годах были изготовлены первые опытные партии, но новое топливо не нашло такого широкого применения, как на реакторах РБМК. И сейчас вопрос массового перехода энергоблоков PWR на двухгодичную кампанию только прорабатывается.
Одно время уран-эрбиевым топливом весьма интересовались французские специалисты. В России при разработке перспективных реакторов типа ВВЭР также предполагается в топливе вместо гадолиния использовать эрбий, но пока все находится на стадии поисковых исследований.
Российские атомщики обладают большим опытом по изготовлению и использованию уран-эрбиевого топлива, и он вполне может представлять интерес для зарубежных производителей ядерного топлива.

- Каковы перспективы дальнейшего использования эрбия?
АФ: Мы продолжаем исследования, разрабатывая уран-эрбиевое топливо третьего поколения.
Логичный шаг в этом направлении - переход на обогащение в 3% с соответствующим повышением содержания эрбия. Но расчеты показали, что такое обогащение является нежелательным по всей высоте ТВС. Оптимальной оказалась конструкция ТВС, когда центр ТВС содержит высокообогащенный уран 3,2 %, а края – уран меньшего обогащения 2,5 %. По нашим расчетам это дает экономию примерно 5 % в расходе топлива только за счет профилирования (при одинаковом среднем обогащении). По сравнению с современным топливом экономия составит 13%.
Первая партия нового топлива изготовлена, в прошлом году началась его загрузка во второй блок Ленинградской станции. В этом году летом должна завершиться загрузка 200-й ТВС. Если топливо себя хорошо зарекомендует в эксплуатации, то оно будет распространяться на другие станции.
Что касается перспектив использования уран-эрбиевого топлива для реакторов типа ВВЭР, то при увеличении топливной кампании и переходе на полуторагодичный или же двухгодичный цикл, скорее всего, без него не обойтись.

- Если подвести итог, что дало использование уран-эрбиевого топлива?
АФ: Во-первых, за счет снижения парового эффекта реактивности повысилась безопасность реакторов РБМК. Так, например, при вероятном разрыве напорного коллектора – самого опасного вида аварии – исключено увеличение мощности реактора.
Во-вторых, уран-эрбиевое топливо позволило провести реконструкцию СУЗ и снизить количество дополнительных поглотителей.
И, в третьих, существенно улучшилась экономика АЭС.
В целом, по отзывам многих специалистов, внедрение уран-эрбиевого топлива стало одним из крупнейших достижений в истории топливного цикла реакторов РБМК.
Клаузевиц, RU   18.08.16 20:26            
Ученые из Новосибирска и Германии исследуют возможность получения нового топлива из ядерно-поляризованных частиц (преимущественно дейтерия), способного повысить эффективность работы термоядерных реакторов, в рамках совместного проекта "К молекулярному источнику поляризованного дейтериевого топлива для исследований ядерного синтеза и других применений"
- Ссылка

Основная реакция, используемая в ITER — слияние ядер дейтерия дейтерия и трития трития с образованием ядра гелия гелия (альфа-частицы) и высокоэнергетического нейтрона нейтрона. Ядерный спин дейтерия равен 1, а спин ядра трития ½. Полный спин такой системы может быть равен 3/2 или ½. Для энергий плазмы, характерной для ITER, эта реакция протекает в S-волне (поперечной) и имеет резонансный характер для спина 3/2 (вероятность взаимодействия 96 %), остальное приходится на спин 1/2 и более высокие волны. Учитывая статистический вес этих состояний, можно сказать, что одна треть ядер, находящихся в реакторе, практически не участвует в получении энергии. Тем не менее, эта часть прогревается до высокой температуры, то есть энергия тратится впустую.
"Как уголь: бывает с высокой зольностью и низкой. Плохо, если после прогорания остается много золы. Процессы в основе функционирования реактора устроены таким образом, что, скажем, 1/3 топлива просто не работает. Однако если взять поляризованное топливо, этого можно избежать. В таком случае оно будет использоваться на 100 %, и затраты уменьшатся, а мощность термоядерного реактора останется прежней", — рассказывает руководитель российского научного коллектива, ведущий научный сотрудник Института ядерной физики им. Г.И. Будкера СО РАН, доктор физико-математических наук Дмитрий Константинович Топорков.
Связано это с тем, что ядерные силы зависят от взаимной ориентации спинов взаимодействующих частиц. Применив поляризованное топливо, получим взаимодействующие частицы с суммарным спином 3/2, повысив тем самым эффективность использования топлива в полтора раза.
Поляризованные атомные пучки дейтерия и водорода получают уже давно в целях проведения физических экспериментов, в том числе и в ИЯФ СО РАН. Для этого создается сложная электрофизическая установка, в которой из обычных молекул (газ дейтерий или водород из баллона) формируется пучок поляризованных по ядерному спину атомов.
"Для проведения экспериментов с поляризованными мишенями в ИЯФ был сделан наиболее мощный источник поляризованных атомов дейтерия со сверхпроводящими секступольными магнитами. Между тем топливо в виде атомов недостаточно эффективно, и, что самое печальное, интенсивность таких источников принципиально ограничена некоторыми физическими процессами. Поэтому мы предложили схему получения поляризованных по ядерному спину молекул. Данное решение облегчает изготовление поляризованного топлива и снимает ряд принципиальных ограничений", — объясняет Дмитрий Константинович.
В Дюссельдорфском университете им. Генриха Гейне (Германия) ученые трудятся над управляемым инерциальным термоядерным синтезом, когда твердое или жидкое топливо разогревается до нужных температур сверхмощным лазерным импульсом. Поляризованное топливо и здесь бы повысило выход реакции. В данном случае поляризованные молекулы можно было бы сконденсировать в жидкость или в лед. В Германии, конечно, работают над получением поляризованных молекул, только процесс этот весьма трудоемок. Сначала образуют поляризованные атомы (интенсивность которых, как отмечалось ранее, ограничена), далее объединяют их в молекулу. Важно, что немецкие ученые умеют измерять степень поляризации ядер в молекулах.
Новосибирские специалисты считают, что традиционной цепочки (молекулы — поляризованные атомы — поляризованные молекулы) можно избежать и сразу получать последние. Однако из-за замкнутой электронной оболочки молекула обладает только ядерными магнитными моментами, которые весьма малы. В этом отношении атом гораздо удобнее, так как у него магнитный момент в 300 раз больше, чем у молекулы, поэтому атомы проще сфокусировать и разделить пространственно.
Дмитрий Топорков уверяет, что это не проблема: "Поскольку у нас имеются сверхпроводящие магниты с весьма большим магнитным полем, то мы способны сфокусировать молекулы. Для этого нужно сильно понизить их температуру. Сделать это несложно, так как в источнике используется жидкий гелий. Нам важно продемонстрировать такую возможность и изучить фокусировку молекул, а дальше, на основе результатов, полученных в ходе этого исследования, — создавать более масштабный прототип. Например, сейчас у нас два магнита длиной 7 и 12 сантиметров, а надо будет увеличить этот параметр до двух метров. В принципе, всё это реализуемо".
Другой вопрос, ответ на который ученым предстоит найти в ходе своего проекта, получившего совместный грант Российского научного фонда и Немецкого физического общества, — изучение сохранения поляризации молекул, а также измерение последнего. Немецкие ученые создали Lamb-shift поляриметр, установку, с помощью которой можно анализировать ядерную поляризацию как атомов, так и молекул.
"Наши партнеры готовы сделать большую часть поляриметра, мы, в свою очередь, также внесем вклад в устройство и применим его для исследования поляризации молекул из нашего источника", — добавляет Дмитрий Константинович.
В дальнейшем ученые планируют узнать, долго ли сохраняется поляризация, а также заняться самими молекулами: есть ли возможность их компрессировать, собирать и изучать свойства. В перспективе поляризованные молекулы, возможно в замороженном виде (как таблетки льда), послужат топливом для установок, работающих на основе лазерного синтеза, токамак-реакторов или в качестве поляризованной мишени высокой плотности для различных физических экспериментов.

Клаузевиц, RU   14.08.16 19:18            
В России научились получать самые точные данные для термоядерных реакторов - Ссылка

Ученые из Национального исследовательского ядерного университета "МИФИ" (НИЯУ МИФИ) в рамках проекта Международного агентства по атомной энергии создали методику, которая позволяет получить самые точные данные, необходимые для обеспечения надежной работы термоядерных реакторов. Результаты работы опубликованы в престижном мировом научном издании Journal of Nuclear Materials, сообщила пресс-служба российского вуза.

Термоядерные установки создаются, чтобы попытаться использовать для получения электроэнергии термоядерную реакцию, происходящую, в частности, на Солнце. В случае успеха это даст человечеству практически неисчерпаемый источник энергии. Самым крупным проектом в этой области является проект международного термоядерного реактора ИТЭР, который сейчас строится во Франции.

Строительство термоядерных установок сопряжено с рядом существенных проблем. Например, остается открытым вопрос выбора материала для наиболее энергетически напряженных, контактирующих с термоядерной плазмой элементов реактора. Одним из самых перспективных материалов представляется вольфрам. Но специалисты пока не знают точно, как поведет себя этот металл в условиях работающего термоядерного реактора, в частности при взаимодействии с одним из компонентов термоядерного "горючего" – радиоактивным изотопом водорода тритием. Захват трития в радиационные дефекты металла обращенных к плазме стенок реактора является одной из серьезных потенциальных проблем.

Накопление трития представляет угрозу с нескольких точек зрения, пояснил сотрудник кафедры физики плазмы МИФИ Юрий Гаспарян. Он отметил, что тритий в большом количестве может привести к "полной деградации" механических свойств стенок реактора. Также неконтролируемый выход накопившегося трития из материала стенок приводит к так называемому срыву плазмы и выбросу огромной энергии, добавил Гаспарян. Для поиска решения этих проблем надо, в частности, знать величину энергии взаимодействия водорода с дефектами металла стенок термоядерных установок. Сотрудники кафедры физики плазмы МИФИ создали новую методику измерения этого параметра.
По словам Гаспаряна, эта методика, в отличие от использовавшихся ранее, позволяет получать наиболее точные из возможных значений. При этом они нечувствительны или минимально чувствительны к факторам, которые прежде существенно влияли на результаты измерений.

Клаузевиц, RU   10.08.16 11:05            
Открытие российских учёных поможет обеспечить работу термоядерных реакторов - Ссылка

Сотрудники кафедры физики плазмы Национального исследовательского ядерного университета МИФИ сделали открытие, которое позволит защитить элементы термоядерных реакторов от повреждения при воздействии плазмы, и тем самым обеспечить их надежную работу, сообщила пресс-служба вуза. Термоядерные установки создаются, чтобы попытаться использовать для получения электроэнергии термоядерную реакцию, происходящую, в частности, на Солнце. В случае успеха это даст человечеству практически неисчерпаемый источник энергии. Самым крупным проектом в этой области является проект международного термоядерного реактора ИТЭР, который сейчас строится во Франции.
Одним из нежелательных явлений, которые могут происходить в таких установках, являются так называемые униполярные дуги, возникающие между термоядерной плазмой и обращенной к ней первой стенкой реактора. Это явление будет приводить к разрушению стенки реактора, загрязнению и охлаждению плазмы, что недопустимо при осуществлении управляемого термоядерного синтеза. Механизм возникновения униполярных дуг до конца еще не изучен, поэтому исследования, связанные с этой проблемой, имеют передовой характер.
Взаимодействие плазмы с вольфрамом, входящим в состав первой стенкой термоядерного реактора, приводит к тому, что металлическая поверхность покрывается огромным количеством волосков диаметром в несколько десятков нанометров и длиной до одного микрона. Ученые назвали их "вольфрамовым нанопухом".
Сотрудник кафедры физики плазмы МИФИ Дмитрий Синельников, находясь на стажировке в Нагойском университете Японии, обнаружил, что после возникновения униполярных дуг на вольфрамовом пухе возникают похожие на снежинки структуры. После этого на кафедре в МИФИ были проведены дополнительные эксперименты с целью выяснить, как такие структуры определяют свойства вольфрамового нанопуха при действии на него электрических полей высокой напряженности. Выяснилось, что такие "снежинки" в значительной мере влияют на то, каким будет воздействие электрического поля.
"Помимо внешней красоты, кратеры-снежинки могут помочь лучше разобраться в механизме перемещения дуги по поверхности", – отметил Синельников, слова которого цитируются в сообщении.
По мнению авторов работы, дальнейшее изучение этого явления поможет предотвратить возникновение вредных униполярных дуг в термоядерных установках и тем самым обеспечить их надежную эксплуатацию.

Клаузевиц, RU   09.08.16 17:09            
Российские физики совершили прорыв в работе над термоядерным реактором - Ссылка #ixzz4GpTpcoxo

НОВОСИБИРСК, 9 авг – РИА Новости. Ученые Института ядерной физики (ИЯФ) добились устойчивого нагрева плазмы до температуры в десять миллионов градусов по Цельсию, сообщил журналистам замдиректора института по научной работе Александр Иванов.

"Мы подтвердили результаты последних лет по нагреву плазмы до температуры масштабов десяти миллионов градусов, это очень важный момент для перспектив нашей работы. Сейчас очень серьезно мы начали рассматривать варианты создания термоядерной системы на основе открытой ловушки", — сказал он.
Иванов отметил, что специалисты института работают над проектом термоядерного реактора на основе открытой ловушки, который может быть создан в ближайшие 20 лет и должен стать альтернативой международного термоядерного экспериментального реактора (ИТЭР). Ученые предполагают, что в последующих экспериментах температура плазмы существенно вырастет, при этом минимальный показатель, требуемый для создания термоядерного реактора, уже превышен.
"Сейчас произошли очень сильные изменения в отношении к таким системам. У нас в институте мы рассматриваем возможности для создания следующих поколения ловушек, параметры которых будут существенно увеличены. И будем серьезно думать над реактором", — сказал Иванов.
Также ученые разработали перспективный метод генерации плазмы при помощи мощного микроволнового излучения в крупномасштабной магнитной ловушке открытого типа (ГДЛ), что позволило успешно провести эксперименты по улучшению удержания плазмы с "термоядерными" параметрами.
"Сейчас мы можем получать плазму в более чистых, более контролируемых условиях", — отметил Иванов.
Ранее ИЯФ сообщал о планах разработки альтернативного реактора, который будет более привлекателен в коммерческом отношении по сравнению с ИТЭР. Окончательно оформить технико-экономические основания для проекта с условным названием ГДМЛ (газодинамическая ловушка) институт планирует в рамках программы Института с финансированием Российского научного фонда, которая рассчитана до 2018 года.

Клаузевиц, RU   22.07.16 18:56            
Карта глобального присутствия компании Росатом - Ссылка

Зарубежные дипломаты познакомятся с российскими разработками в области реакторов на быстрых нейтронах - Ссылка

В составе делегации 21 высокопоставленный дипломат и ядерный эксперт, в том числе из Китая, Японии, Южной Кореи, Германии, Аргентины, Бельгии, Швейцарии, Израиля, Сингапура, Словакии, Пакистана, Катара.

Свежее интервью Кириенко - Ссылка
Zmey, Moderator   16.07.16 09:30            
Я из тупых военных :) инженер минус математик... У меня школа была хорошая.
Клаузевиц, RU   15.07.16 15:27            
Змей, а вы кто по образованию, если не секрет? Наукой профессионально интересуетесь или в качестве любителя?
Zmey, Moderator   11.07.16 08:10            
Кстати, я в ветке про науку писал о том, что в будущем человечество будет всё сильнее и сильнее проникать в микромир. Вот эти исследования на БАКе как раз о том же - человечество всё сильнее исследует микромир. Дальше будут исследования всё меньших и меньших кирпичиков мироздания.
Ну да. Сейчас модная тема - преоны. Стандартная модель настойчиво требует упрощения.
Клаузевиц, RU   08.07.16 20:35            
Змей, можно и в этой ветке это обсудить. "Эта ветка о всем, что связано с атомными технологиями: 1) АЭС и термоядерном синтезе; 2) ядерном и термоядерном оружии; 3) медицинском примении радиоизотопов; 4) атомной промышленности; 5) фундаментальных исследованиях; 6) авариях на атомных объектах; 7) применении атомных технологий в космосе; 8) синтезе новых тяжелых химических элементов."
Правда я не особо силён в тематике Стандартной модели. Я не учёный-физик по образованию. Просто интересуюсь наукой, поскольку мне интересно как устроен мир и интересно что нас ждёт в будущем. Про то что обычно частицы состоят из 2 или 3 кварков - это я слышал, что 4 кварка - это экзотика - тоже слышал, но больше этого не особо разбираюсь.

Кстати, я в ветке про науку писал о том, что в будущем человечество будет всё сильнее и сильнее проникать в микромир. Вот эти исследования на БАКе как раз о том же - человечество всё сильнее исследует микромир. Дальше будут исследования всё меньших и меньших кирпичиков мироздания.
Zmey, Moderator   07.07.16 09:09            
-->Клаузевиц
Физики на Большом Адронном Коллайдере обнаружили 3 новые экзотические частицы
Вот это, кстати, больше тема для раздела "наука и образование". Потому что тут не о ядерной энергетике, а о серьезном сдвиге в квантовой механике. Они там только более менее строго упорядочили все по полкам, закрыли Стандартную модель бозоном Хиггса, разделили все частицы на составные (из двух или из трех кварков) и бесструктурные. А тут на тебе - четыре кварка на частицу. Экзотика.
Клаузевиц, RU   06.07.16 22:47            
США и их союзники напуганы российским ядерным двигателем в космосе - Ссылка
Клаузевиц, RU   06.07.16 21:18            
Физики на Большом Адронном Коллайдере обнаружили 3 новые экзотические частицы - Ссылка
Клаузевиц, RU   29.06.16 19:21            
Акции 4 атомных предприятий передадут Росатому в качестве взноса РФ - Ссылка

Министр экономики Франции назвал ядерную энергетику будущим страны - Ссылка

Соглашение между Россией и Иорданией о строительстве АЭС вступило в силу
- Ссылка

Росатом примет решение о строительстве энергоблока БН-1200 в 2019 году - Ссылка
 Страница 4 из 9   « Первая страница< 1  2  3 4 5  6  7  8  9 >Последняя страница » 
 
English
Архив
Форум

 Наши публикациивсе статьи rss

» Памяти Фывы
» Сирийские перспективы
» Какая классовая борьба настоящая, и может ли рабочий класс быть субъектом классовой борьбы?
» Система Джемаля
» Пятница,13-е
» Прокси-война России и мира Запада: кому это выгодно экономически?
» Война на Кандалакшском направлении 1941-1944, Сборник документов с немецко-финской стороны
» Что является капиталом венчурного инвестора
» О категории «снятие» у Гегеля и в диалектическом материализме

 Новостивсе статьи rss

» ВМФ России получит первый боевой ледокол «Иван Папанин» в 2025 году
» РФ заявила странам Балтии досудебные претензии из-за ущемления русских
» В России признали нежелательной деятельность "Хельсинкского комитета"*
» De Beers не может распродать алмазы из-за низкого спроса, пишет FT
» Страны НАТО не готовы противостоять России без участия США
» Украина запретила экспорт соли, газа и золота в 2025 году из-за дефицита
» Отстраненный от власти Юн Сок Ёль снова не явился на допрос. Грозит ли президенту Кореи арест
» ХАМАС отказывается от принятых договоренностей по Газе, заявили в Израиле

 Репортаживсе статьи rss

» Антон Алиханов: в России уже производят свои Барби и лего
» Индия сорвала многомиллиардный тендер на строительство
» Итоги года с Владимиром Путиным
» Курс остается верным. Президент отметил значительные успехи российской экономики в 2024 году
» Июнь 1939 года. СССР, его враги и его неудавшиеся союзники
» СМИ ЕС в панике от зависимости Польши от российских удобрений
» В зоне СВО ликвидировано уже 6,5 тыс. наемников
» Роберт Фицо: Европа должна начать нормальный диалог с Россией

 Комментариивсе статьи rss

» Зачем Трампу далекие льды: Дания усилит оборону Гренландии собачьими упряжками
» Погостили и хватит: в Турции задумались над возвращением сирийских беженцев на родину
» Россия не видит Швейцарию посредником по Украине
» "Иначе — война с Украиной": в Европе попросили не отбирать последнее
» США создают биологическое оружие нового поколения
» 60 лет назад была создана ЮНКТАД, которую возглавил непримиримый противник неоколониализма
» Историк рассказал, как украинских националистов "кинул" еще Гитлер
» Как атомной отрасли удалось сохранить научные школы, единство и управляемость

 Аналитикавсе статьи rss

» «Избавиться от морока либерализма»: Какую победу может одержать российский учитель?
» Китай впервые за 14 лет поддержит свою экономику
» Инфляция в РФ в ноябре составила 1,43%, годовая ускорилась до 8,88%
» США передали Украине 847 ракет Patriot на 3,26 миллиарда долларов
» Эффект бумеранга. Volkswagen может пасть жертвой русофобской политики Евросоюза
» Молдавии придется выплатить долг "Газпрому", чтобы не остаться без газа
» Европа очень ждет большую кровь под русским флагом
» С чем Россия может вернуться в Афганистан
 
мобильная версия Сайт основан Натальей Лаваль в 2006 году © 2006-2024 Inca Group "War and Peace"